On Strongly Closed Subgraphs with Diameter Two and Q-Polynomial Property∗ (Preliminary Version 2.0.0)

نویسنده

  • Hiroshi SUZUKI
چکیده

In this paper, we study a distance-regular graph Γ = (X,R) with an intersection number a2 6= 0 having a strongly closed subgraph Y of diameter 2. Let E0, E1, . . . , ED be the primitive idempotents corresponding to the eigenvalues θ0 > θ1 > · · · > θD of Γ. Let V = C be the vector space consisting of column vectors whose rows are labeled by the vertex set X. Let W be the subspace of V consisting of vectors whose supports lie in Y . A nonzero vector v ∈W is said to be tight if E0v = Eiv = 0 for some i = 1, 2, . . . , D. We show that the existence of a tight vector in W is equivalent to a balanced condition defined by P. Terwilliger. As an application, we study the structure of parallelogram-free distance-regular graphs and conditions for these graphs to be Q-polynomial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On strongly closed subgraphs with diameter two and the Q-polynomial property

1Introduction Let $\Gamma=(X, R)$ be a distance-regular graph (DRG) of diameter $\Gamma_{j}(u)=\{x\in X|\partial(u, x)=j\}$ and $\Gamma(u)=\Gamma_{1}(u)$. For two vertices $u$ and $v\in X$ with $\partial(u, v)=j$ let $C(u., v)$ $=$ $\Gamma_{j-1}(u)\cap\Gamma(v)$ , $A(u, v)$ $=$ $\Gamma_{j}(u)\cap\Gamma(v)$ , and $B(u, v)$ $=$ $\Gamma_{j+1}(u)\cap\Gamma(v)$ .

متن کامل

A Distance-Regular Graph with Strongly Closed Subgraphs

Let be a distance-regular graph of diameter d, valency k and r := max{i | (ci , bi ) = (c1, b1)}. Let q be an integer with r + 1 ≤ q ≤ d − 1. In this paper we prove the following results: Theorem 1 Suppose for any pair of vertices at distance q there exists a strongly closed subgraph of diameter q containing them. Then for any integer i with 1 ≤ i ≤ q and for any pair of vertices at distance i ...

متن کامل

Subgraphs Graph in a Distance-regular Graph

Let Γ denote a D-bounded distance-regular graph, where D ≥ 3 is the diameter of Γ. For 0 ≤ s ≤ D − 3 and a weak-geodetically closed subgraph ∆ of Γ with diameter s, define a graph G(∆) whose vertex set is the collection of all weak-geodetically closed subgraphs of diameter s+2 containing ∆, and vertex Ω is adjacent to vertex Ω′ in G if and only if Ω∩Ω′ as a subgraph of Γ has diameter s+1. We sh...

متن کامل

On annihilator ideals in skew polynomial rings

This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...

متن کامل

Subelliptic Boundary Value Problems and the G-fredholm Property Preliminary Version

Let G be a unimodular Lie group, X a compact manifold with boundary, and M be the total space of a principal bundle G → M → X so that M is also a complex manifold satisfying a local subelliptic estimate. In this work, we show that if G acts by holomorphic transformations in M , then the Laplacian = ∂̄∗∂̄ + ∂̄∂̄∗ on M has the following properties: The kernel of restricted to the forms Λ with q > 0 i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004